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Some motivation

Bio-medical engineering
(blood vessel counting)

Biology
(earthworm contours)

Autonomous Vehicles
(lane line detection)

Psychology/ Human computer interaction
(eye tracking)

Robotics
(scene understanding)



What is curve fitting

• Curve fitting is the process of constructing a curve, or mathematical function, 
that has the best fit to a series of data points. [Wikipedia]

• Input: dataset (e.g.: {(𝑥𝑖 , 𝑦𝑖)}𝑖=1,..,𝑁 in 2D).

• Output: best representing function (e.g.: 𝑓 𝑥 = 𝑦 ).

• This problem is also called Regression.



Best fit

• The best fit is the one which minimizes the error of the fitted function relative 
to the given data.



Error / Loss

• Error (also known as loss) is a method of evaluating how well a specific algorithm 
models the given data.

– If predictions deviates too much from actual results, error would be high.

• A popular error used a lot in CV and statistics is called MSE (mean square error, also 
known as L2 loss or quadratic loss).

• MSE: The mean of the distance from each point to the predicted regression model.

• We need to find the set of variables that minimizes the error - MMSE (minimum 
mean square error).

• Other variants of this error are SSD (sum of square distances) or RMSE (root mean 
square error)



Linearity assumption

• From now and until the end of the class we will assume that our fitted 
function 𝑓(𝑥) is linear in its unknown variables.

• linear in its unknown variables- example:

– Fitting a line to the data 𝑓 𝑥 = 𝑚𝑥 + 𝑏, (𝑚, 𝑏) are linear in the input.

– A parabolic fit: finding (𝑎, 𝑏, 𝑐) for the best 𝑓 𝑥 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 is also a linear 
fit! A linear combination of it’s known input. One can assume 𝑓 𝑥 = 𝑔(𝑥2, 𝑥) =
𝑎𝑥2 + 𝑏𝑥 + 𝑐 and see the linear combination more vividly.

• Interchangeable names in this class: (linear) regression, (linear) least squares.

– With the linear prefix it’s more accurate, but we won’t bother…



Linearity assumption

• What is not linear in its unknown variables?



Linearity assumption

• What is not linear in its unknown variables? 

• For example, an off-centered circle:
𝑥 − 𝑎 2 + 𝑦 − 𝑏 2 = 𝑟2

𝑥2 − 2𝑎𝑥 + 𝑎2 + 𝑦2 − 2𝑏𝑦 + 𝑏2 = 𝑟2



MMSE & Least squares

• When the fitted function 𝑓(𝑥) is linear in its unknown variables (and the 
noisy input data is uncorrelated and have equal variance) we can use a 
method called LS- least squares (more precisely linear least squares) to solve 
the MMSE problem.

• This method is mathematically proven to be the one which minimizes the L2 
error for the fitted data.



• Given: 

find best line representation:

• The best representation 𝑚, 𝑏 is the one that minimizes the total error 𝑒.

Line fitting- least squares (LS): step by step example



• Given: 

find best line representation:

• The best representation 𝑚, 𝑏 is the one that minimizes the total error 𝑒.

• How do we find this set of variables?

Line fitting- least squares (LS): step by step example



Line fitting- least squares (LS): step by step example

• Find derivatives of 𝑒 with respect to both variables 𝑚, 𝑏 s.t. (such that) we’ll 
reach the minimum error (partial derivative of both variables equals zero…):

• Full derivation here. 

https://en.wikipedia.org/wiki/Proofs_involving_ordinary_least_squares#Derivation_of_simple_linear_regression_estimators
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Line fitting - LS in matrix form



Side note: pseudoinverse

• This is a known result which is called the pseudoinverse matrix of 𝑋. It is also 
known as Moore–Penrose inverse.

• If 𝑋𝑇𝑋 is not invertible, the solution will be:

• The solution above is a solution for any linear regression problem that is 
over-determined (==more equations than unknowns). 



Curve fitting - LS

• What about curve fitting?

• Recall the matrix linear LS result:

• The solution above is a solution for any linear regression problem that is 
over-determined (==more equations than unknowns). 

– Linear regression means only that the unknowns are linearly dependent in the 
data, not that the data is linear.

– Notice that in our derivation we didn’t use the assumption that the data is 
linear…

• For example- data set of a parabola:

𝑥𝑖 , 𝑦𝑖 𝑠. 𝑡. 𝑎𝑥𝑖
2 + 𝑏𝑥𝑖 + 𝑐 = 𝑦𝑖

– How the matrices 𝑋, 𝑦, 𝛽 will look like?



Curve fitting - LS

• data set of a parabola:

𝑥𝑖 , 𝑦𝑖 𝑠. 𝑡. 𝑎𝑥𝑖
2 + 𝑏𝑥𝑖 + 𝑐 = 𝑦𝑖

• The solution of this LS problem is the same:



• least_squares.ipynb



Problem 1: fitting vertical data

• Near vertical data is hard to fit since the error is computed perpendicular to x 
axis- the bigger the error, the bigger the error squared! (more weight for this 
datapoint).

• Proposed solutions?

Huge 𝑒𝑖!



Problem 1: fitting vertical data

• One possible solution is making all errors weigh the same (and not squared). 
This will make the far points have the same impact on error as closer points. 
One such error MAE (mean absolute error, also known as L1 loss) instead of 
MSE. 

– The derivation of MAE is out of the class scope, but some details can be found 
here.

• Another possible solution is computing the error distance of each point in a 
different way- one that takes into account the y data as well. One such 
algorithm is total least squares.

https://en.wikipedia.org/wiki/Least_absolute_deviations
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Line fitting- total least squares



Line fitting- TLS

• Another representation of a line:

• Distance between a point 𝑥𝑖 , 𝑦𝑖 and line:  

• The line equation above has 2 degrees-of-freedom (DOFs), so we can decide 
that, for later purpose, 𝑎2 + 𝑏2 = 1.

• The error to be minimized:



Side note: DOFs- degrees of freedom 

• DOF is the number of values that are free to vary.

• Example: (𝑥, 𝑦)
– both are independent variables (unrelated to one another) so we have 2 

DOF. We can say 𝑥, 𝑦 represents a 2D plane. 

– Conclusion: 2D plane has 2 DOF.

• Let’s add a constraint 𝑦 = 3𝑥 + 2
– Now 𝑦 is dependent in 𝑥 so we only have 1 DOF.

– Conclusion: line equation has 1 DOF.

• Let’s add another constraint 𝑥 = 1. 
– Now we have 0 DOF! There is only one possible solution for our variables: 1,5 .

– Conclusion: point in space has 0 DOF.

• As a rule- each equation (==constraint) removes 1 DOF from our calculations. 



Side note: DOFs- degrees of freedom 

• DOF is the number of values that are free to vary.

• 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 where 𝑥, 𝑦 are knowns and (𝑎, 𝑏, 𝑐) are our variables.

– 3 variables and 1 constraint means 2 DOF.



Line fitting- TLS

• Another representation of a line:

• Distance between a point 𝑥𝑖 , 𝑦𝑖 and line:  

– This equation removes another DOF.

• Let’s decide that, for later purpose, 𝑎2 + 𝑏2 = 1. 

– This removes the final DOF.

• The error to be minimized:
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Line fitting- TLS

• Another representation of a line:

• Distance between a point 𝑥𝑖 , 𝑦𝑖 and line:  

– This equation removes another DOF.

• Let’s decide that, for later purpose, 𝑎2 + 𝑏2 = 1. 

– This removes the final DOF.

• The error to be minimized:



Line fitting- TLS

• The error to be minimized:

• Notice that this is no longer the L2 error.

– we do not calculate the mean of the distance from each point to the predicted 
regression model.



Line fitting- TLS- derivation 
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Line fitting- TLS- derivation 



Line fitting- TLS -the minimization problem

• The minimization problem is:

• Recall eigendecomposition: 

– Also recall that each eigenvector 𝑣 is normalized ( 𝑣 = 𝑣𝑇𝑣 = 1).

• The solution to the minimization problem above is the eigenvector 
corresponding to smallest eigenvalue of 𝑋𝑇𝑋.

• Watch out: trying to minimize the problem above without the constraint 
𝛽𝑇𝛽 = 1 will result with the trivial solution of 𝛽 = 0.



The planarity assumption
• This method works for fitting all kind of planar data in ND space, because of 

the planar representation and a distance function as we’ve seen above.
– For example in 3D:

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0

dist =
|𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑|

𝑎2 + 𝑏2 + 𝑐2

• TLS for non-planar data also exist, but this can’t be solved as before (the 
planarity assumption was used). This topic is out of scope- proof and 
examples here.

http://people.duke.edu/~hpgavin/SystemID/CourseNotes/TotalLeastSquares.pdf


Problem 2: fitting with outliers datapoints

• Outlier: a data point that differs significantly from other observations. 
[Wikipedia]

Squared error heavily penalizes outliersLeast-squares error fit



Problem 2: fitting with outliers datapoints

• One possible solution: MAE (again)- for less penalization on outliers.

• A better solution: removing the outliers! Possible algorithm to use: RANSAC
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RANSAC

• Random sample consensus (RANSAC) is an iterative method to estimate 
parameters of a mathematical model from a set of observed data that 
contains outliers. [Wikipedia]



RANSAC algorithm

While searching for best model fit:
Select a random subset of the original data. 
Fit a model to the data subset.
find inliers that fit the given model.
if number_inliers is bigger than the old best model 
number_inliers:

Save as best model



RANSAC algorithm - step by step - 1

Select a random subset of the original data. 
• The number of samples in the subset is the smallest needed to determine the 

model parameters (== number of unknow variables).
• Examples:

– For line fit- only 2 datapoints.

– For parabola fit- 3 datapoints.



RANSAC algorithm - step by step - 2

Fit a model to the data subset.

• Can be done using a chosen algorithm (for example LS).



RANSAC algorithm - step by step - 3

find inliers that fit the given model.

• Test all dataset against the fitted model. Points that fit the estimated 

model well, according to some chosen loss function, are considered as 

part of the consensus set. This points are called inliers.

• A possible loss function is MSE of the distances (same as TLS).

– Choose a threshold for the error: below this TH the datapoint will be 
consider as an inlier.

TH



RANSAC algorithm - step by step - 4

if number_inliers is bigger than the old best model 
number_inliers:

Save as best model

• Trivial… 

• An improvement to the final step can be iteratively re-fitting the model 
with all inliers to find a better describing model.



RANSAC algorithm - step by step - 0

While searching for best model fit:

• How do we know when to stop? How much we need to iterate before getting 
the best model?

• Let’s look at a possible statistical model for this question.



RANSAC convergence 

• Denote

𝜔 =
# 𝑖𝑛𝑙𝑖𝑒𝑟𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠
:

– getting 𝜔 ratio will be considered as reaching the best model.

– This ratio is usually user specified according to dataset properties (or educated 
guess). 

𝑘: number of iterations (will be calculated).

𝑝: percentage chance of achieving best model in chosen 𝑘 iterations (also user 
specified).

𝑛: number of initially sampled subset datapoints.



RANSAC convergence 

• 𝜔𝑛 is the probability that all 𝑛 points are inliers.

• 1 − 𝜔𝑛 is the probability that at least one of the 𝑛 points is an outlier.

• 1 − 𝑝 = 1 − 𝜔𝑛 𝑘 is the probability that in 𝑘 iterations we will always have 
at least one outlier (meaning we didn’t get best match).

• 𝑘 =
log(1−𝑝)

log(1−𝜔𝑛)


