Geometric transformation

References

- http://szeliski.org/Book/
- <u>http://www.cs.cornell.edu/courses/cs5670/2019sp/lectu</u> <u>res/lectures.html</u>
- http://www.cs.cmu.edu/~16385/

contents

- 2D->2D transformations
- 3D->3D transformations
- 3D->2D transformations (3D projections)
 - Perspective projection
 - Orthographic projection

Objective

 Being able to do all of the below transformations with matrix manipulation:

translation

shear

rotation

scale

projective

Why matrix manipulation?

Objective

 Being able to do all of the below transformations with matrix manipulation:

 Why matrix manipulation? Because then we can easily concatenate transformations (for example translation and then rotation).

2D planar transformations

scale

scale

scale

y

x' = axy' = bymatrix representation of scaling: $\left[\begin{array}{c} x'\\y'\end{array}\right] = \left[\begin{array}{cc}a&0\\0&b\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right]$ scaling matrix S Scale

Shear

Shear

Rotation

x

Rotation

Polar coordinates...

 $x = r \cos (\phi)$ $y = r \sin (\phi)$ $x' = r \cos (\phi + \theta)$ $y' = r \sin (\phi + \theta)$

Trigonometric Identity... $x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$ $y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$

Substitute... $x' = x \cos(\theta) - y \sin(\theta)$ $x' = x \sin(\theta) + y \cos(\theta)$ $y' = x \sin(\theta) + y \cos(\theta)$

x

Rotation

Important rotation matrix features

- det(R) = 1
 If det(R) = -1 then this is a roto-reflection matrix
- $R^T = R^{-1} \leftrightarrow RR^T = R^TR = I \leftrightarrow$ orthogonal matrix \leftrightarrow a square matrix whose columns and rows are orthogonal unit vectors.

Concatenation

 How do we do concatenation of two or more transformations?

Concatenation

 How do we do concatenation of two or more transformations?

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} a & 0\\0 & b \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix} \text{ and then } \begin{bmatrix} x''\\y'' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta\\\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x'\\y' \end{bmatrix}$$
$$\mapsto$$
$$\begin{bmatrix} x''\\y'' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta\\\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} a & 0\\0 & b \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix} a\cos\theta & -b\sin\theta\\a\sin\theta & b\cos\theta \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}$$

• Easy with matrix multiplication!

$$\begin{aligned} x' &= x + t_x \\ y' &= y + t_y \end{aligned}$$

What about matrix representation?

Not possible.

Homogeneous coordinates

Homogeneous coordinates represent 2D point with a 3D vector.

heterogeneous homogeneous coordinates coordinates

Homogeneous coordinates

- Homogeneous coordinates represent 2D point with a 3D vector.
- Homogeneous coordinates are only defined up to scale.

heterogeneous homogeneous coordinates coordinates

• How do we do it now?

x

Side note: linear transformation

 Linear transformation are Transformation that meets additively and scalar multiplication conditions:

$$f(\boldsymbol{u} + \boldsymbol{v}) = f(\boldsymbol{u}) + f(\boldsymbol{v})$$
$$f(c\boldsymbol{u}) = cf(\boldsymbol{u})$$

- Translation is **not** a linear transformation since it doesn't meet the scalar multiplication condition.
- Properties of linear transformations:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved

Affine Transformations

Affine transformations are combinations of linear transformations and translations

$$\begin{bmatrix} x'\\y'\\w \end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\w \end{bmatrix} \text{ or } \begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} a & b\\d & e \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix} + \begin{bmatrix} c\\f \end{bmatrix}$$

- Properties of affine transformations:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved

Affine transformation: example

• Translate then scale vs. scale then translate :

$$\begin{bmatrix} x'\\y'\\w \end{bmatrix} = \begin{bmatrix} a & 0 & 0\\0 & b & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & t_x\\0 & 1 & t_y\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\w \end{bmatrix} = \begin{bmatrix} a & 0 & at_x\\0 & b & bt_y\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\w \end{bmatrix}$$

$$\begin{bmatrix} x'' \\ y'' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} a & 0 & t_x \\ 0 & b & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

• Order of matrices **DOES** matter $(A \cdot B \neq B \cdot A)$

Projective transformation

- Also known as homography or homographic transformation.
- A generalization of affine transformation.
- Properties of projective transformations:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel

– Ratios are preserved

$$\begin{bmatrix} x'\\y'\\w'\end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\g & h & i \end{bmatrix} \begin{bmatrix} x\\y\\w\end{bmatrix}$$

Projective transformation

How many DOFs do we have here?

$$\begin{bmatrix} x'\\y'\\w'\end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\g & h & i \end{bmatrix} \begin{bmatrix} x\\y\\w\end{bmatrix}$$

Projective transformation

- How many DOFs do we have here?
 - We have 9 variables to the projection matrix.
 - Because we use homogenous vectors we can say:

$$\alpha \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \alpha \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- We can add a constraint like

 $\sqrt{a^2 + b^2 + c^2 + d^2 + e^2 + f^2 + g^2 + h^2 + i^2} = 1$ and still get a valid answer.

– 9 variables – 1 constraint = 8 DOF

contents

- 2D->2D transformations
- 3D->3D transformations
- 3D->2D transformations (3D projections)
 - Perspective projection
 - Orthographic projection

3D->3D transformations

- Exactly the same as 2D->2D transformations from earlier, just with 3D.
- What do we see here?

$$\begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & \cos\theta & -\sin\theta & t_y \\ 0 & \sin\theta & \cos\theta & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix}$$

3D->3D transformations

- Exactly the same as 2D->2D transformations from earlier, just with 3D.
- What do we see here?

$$\begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & \cos\theta & -\sin\theta & t_y \\ 0 & \sin\theta & \cos\theta & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix}$$

Rotation around x axis and then translation

contents

- 2D->2D transformations
- 3D->3D transformations
- 3D->2D transformations (3D projections)
 - Perspective projection
 - Orthographic projection

3D projection

- **3D projection** is any method of mapping threedimensional points to a two-dimensional plane.
- Two types of projections are orthographic and perspective.

Perspective- definition

- the art of drawing solid objects on a two-dimensional surface so as to give the right impression of their height, width, depth, and position in relation to each other when viewed from a particular point.
- 2. a particular attitude toward or way of regarding something; a point of view.

• Perspective projection is the kind of projection we get from a regular image of a regular (pinhole) camera.

perspective manipulation

Street art- perspective manipulation

perspective manipulation- Ames Room

Image plane

 When dealing with imaged 3D scenes, we tend to use the image plane rather than the sensor plane which is

 Perspective projection (also known as perspective transformation) is a linear projection where three dimensional objects are projected on the image plane.

• What is the relationship between y & v?

• Using triangle proportions (Thales' theorem) we can easily conclude that: $\begin{bmatrix} x \end{bmatrix}$

• Let's use the homogeneous coordinates:

$$\begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} fx \\ fy \\ z \end{bmatrix} \mapsto \begin{bmatrix} f\frac{x}{z} \\ f\frac{y}{z} \\ z \end{bmatrix}$$

– Units of [m]

 Let's split into 2 matrices and use 3D->2D homogenous coordinates:

Vertigo effect

- Has several different names (vertigo effect, dolly zoom, lens compression, perspective distortion) that all mean the same thing.
- intro:
 - <u>https://www.youtube.com/watch?v=UrhtKvBMZ3g</u> (until 01:50)

Vertigo effect

https://www.youtube.com/watch?v= TTXY1Se0eg(until 02:55)

Vertigo effect

contents

- 2D->2D transformations
- 3D->3D transformations
- 3D->2D transformations (3D projections)
 - Perspective projection
 - Orthographic projection

- A different kind of camera model that can be used is orthographic projection or orthographic camera.
- This kind of projection is invariant to the distance from the camera, and only depends on the object's size.

• Weak perspective matrix (with scale coefficient)

 $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & z_0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z_0 \end{bmatrix} \mapsto \begin{bmatrix} x/z_0 \\ y/z_0 \end{bmatrix}$

When can we assume a weak perspective camera?

- When can we assume a weak perspective camera?
- When dealing with a plane parallel to image plane- z₀ is the distance to this plane.

When far away objects- we can assume the average distance to the objects as z₀.

Weak perspective camera

One way to transform a regular perspective image to an orthographic view is simply taking the picture from a distance with zoom (large focal length).

Weak perspective camera

• Real orthographic camera:

Place a pinhole at focal length, so that only rays parallel to primary ray pass through.

Weak perspective camera

perspective camera

weak perspective camera

Why we want to assume a weak perspective camera?

- Why we want to assume a weak perspective camera?
- Easier to do a lot of image manipulation. For example: image stitching (no projective transformation, just affine), called panograma.

