Stereo

What can be done with stereo vision?

Autonomous driving

SLAM- robot navigation

References

- <u>http://szeliski.org/Book/</u>
- http://www.cs.cornell.edu/courses/cs5670/2019sp/lectures/lectures.html
- http://www.cs.cmu.edu/~16385/

Contents

- Structure from motion
- Triangulation
- Stereo matching
- Camera rectification
- Epipolar geometry
 - Essential matrix
 - Fundamental matrix
 - Estimating the fundamental matrix
- Other 3D sensors

Structure from motion

- Structure from motion (SfM) is the process of estimating the 3-D structure of a scene from a set of 2-D images. SfM is used in many applications, such as 3-D scanning and augmented reality.
 - [Mathworks]
- SfM is also known as **3D reconstruction**.
- Stereo vision is a subcategory of SfM in which we are dealing only with 2 images.

Structure and motion

	Structure (3D model of world)	Motion (6 DOFs of cameras)
Pose Estimation (camera pose estimation)	Known	Estimate
Triangulation	Estimate	Known
3D reconstruction/ SfM/ stereo vision	Estimate	Estimate

Structure and motion

- So essentially one can say that "structure from motion" is the wrong name...
 - Structure and motion is more precise, but nobody will understand what are you talking about.
- In this class we will learn about 3D reconstruction from two cameras (and triangulation as a subtopic).

Contents

- Structure from motion
- Triangulation
- Stereo matching
- Camera rectification
- Epipolar geometry
 - Essential matrix
 - Fundamental matrix
 - Estimating the fundamental matrix
- Other 3D sensors

Triangulation

- Assume both cameras are rectified- 6 DOF of both are the same except the horizontal translation.
- Assume same focal length *f* in both cameras
- Assume we know for each pixel in left the corresponding pixel in right.
- From this we want to get a depth image using triangulation.

Right

Triangulation

- The amount of horizontal movement is inversely proportional to the distance from the camera.
- The amount of horizontal movement == disparity ($d = x_l x_r$).
- Distance from the camera == depth (or Z).

• Note: $x_l \& x_r$ are in normalized image coordinate system: $x = K^{-1} \begin{bmatrix} v \\ v \end{bmatrix}$

Triangulation

Contents

- Structure from motion
- Triangulation
- Stereo matching
- Camera rectification
- Epipolar geometry
 - Essential matrix
 - Fundamental matrix
 - Estimating the fundamental matrix
- Other 3D sensors

Triangulation

- Assume both cameras are rectified- 6 DOF of both are the same except the horizontal translation.
- Assume same focal length *f* in both cameras
- Assume we know for each pixel in left the corresponding pixel in right.
- From this we want to get a depth image using triangulation.

Stereo Block Matching

- Slide a window along the epipolar line and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

Normalized cross-correlation

Effect of window size

W = 3

W = 20

Effect of window size

W = 20

Smaller window

- + More detail
- More noise

Larger window

- + Smoother disparity maps
- Less detail
- Fails near boundaries

When will stereo block matching fail?

When will stereo block matching fail?

Block matching

Ground truth

What are some problems with the result?

How can we improve depth estimation?

How can we improve depth estimation?

Too many discontinuities. We expect disparity values to change slowly.

Let's make an assumption: depth should change smoothly

Energy Minimization

What defines a good stereo correspondence?

- 1. Match quality
 - Want each pixel to find a good match in the other image
- 2. Smoothness
 - If two pixels are adjacent, they should (usually) move about the same amount

$$E(d) = E_d(d) + \lambda E_s(d)$$
$$E_d(d) = \sum_{(x,y)\in I} C(x,y,d(x,y))$$
$$C(x,y,d(x,y))$$
$$C(x,y,d(x,y))$$
$$C(x,y,d(x,y))$$
$$C(x,y,d(x,y))$$

 $E(d) = E_d(d) + \lambda E_s(d)$ $E_d(d) = \sum C(x, y, d(x, y))$ $(x,y) \in I$ SSD distance between windows

centered at I(x, y) and J(x+d(x,y), y)

$$E_s(d) = \sum_{(p,q) \in \mathcal{E}} V(d_p,d_q)$$
 smoothness term

$$V(d_p, d_q) = |d_p - d_q|$$

$$L_1 \text{ distance}$$

Dynamic Programming

One possible solution...

$$E(d) = E_d(d) + \lambda E_s(d)$$

Can minimize this independently per scanline using dynamic programming (DP) •....•

D(x, y, d) : minimum cost of solution such that d(x,y) = d

$$D(x, y, d) = C(x, y, d) + \min_{d'} \left\{ D(x - 1, y, d') + \lambda \left| d - d' \right| \right\}$$

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

Contents

- Structure from motion
- Triangulation
- Stereo matching
- Camera rectification
- Epipolar geometry
 - Essential matrix
 - Fundamental matrix
 - Estimating the fundamental matrix
- Other 3D sensors

Triangulation

- Assume same focal length *f* in both cameras.
- Assume we know for each pixel in left the corresponding pixel in right.
- From this we want to get a depth image using triangulation.

Original stereo pair

Stereo image rectification

- Out of scope...
- Let's say the images comes rectified (as in the yellow samples).
 - Rectification proof here:
 <u>https://www.cs.cmu.edu/~</u>
 <u>16385/s17/Slides/13.1 Ste</u>
 <u>reo Rectification.pdf</u>
- We want to find the relative *R*, *t* of the images.

Contents

- Structure from motion
- Triangulation
- Stereo matching
- Camera rectification
- Epipolar geometry
 - Essential matrix
 - Fundamental matrix
 - Estimating the fundamental matrix
- Other 3D sensors

- **Epipolar geometry** is the geometry of stereo vision. When two cameras view a 3D scene from two distinct positions, there are a number of geometric relations between the 3D points and their projections onto the 2D images that lead to constraints between the image points.
 - [Wikipedia]

Epipolar geometry - The triangulation problem

- Given:
 - two 2D points in the **normalized image coordinate system** (x, x') in two different images (I, I') that describes the same point p in 3D space.
 - Rotation and translation between the two cameras.
- Find *p*.

• Normalized image coordinate system: $x = K^{-1} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$

• We can trace lines from the **camera center** of each image, through the given 2D point to the 3D point *p*.

• **Baseline** is a vector that represent the translation between two cameras

- Epipole *e*: projection of *o*' onto *I*.
 - The place of camera o' in image I.

• Epipolar plane: the plane that is constructed from the 3 points (p, o, o').

• **Epipolar line**: intersection of Epipolar plane and image plane.

Epipolar constraint

- The epipolar constraint: a point x in image I is mapped onto an epipolar line
 l' in image I'.
 - This happens since we don't know p in advance.

• Note: all epipolar lines pass through the epipole.

• Where is the epipole in this images?

• Where is the epipole in this images? The epipole doesn't have to be inside the image!

• Where is the epipole in this image?

• Where is the epipole in this image? The epipolar lines doesn't converge since the baseline (translation) is parallel to the image plane!

Contents

- Structure from motion
- Triangulation
- Stereo matching
- Camera rectification
- Epipolar geometry
 - Essential matrix
 - Fundamental matrix
 - Estimating the fundamental matrix
- Other 3D sensors

Recall: Dot Product

Recall: Cross Product

Vector (cross) product

takes two vectors and returns a vector perpendicular to both

Recall: Cross Product

$$m{a} imes m{b} = \left[egin{array}{c} a_2 b_3 - a_3 b_2 \ a_3 b_1 - a_1 b_3 \ a_1 b_2 - a_2 b_1 \end{array}
ight]$$

Can also be written as a matrix multiplication

$$m{a} imes m{b} = [m{a}]_{ imes} m{b} = egin{bmatrix} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{bmatrix} egin{bmatrix} b_1 \ b_2 \ b_3 \end{bmatrix}$$

Skew symmetric

• Let's define the *o* system as world coordinate system.

**t* here is *c* from camera calibration class

rigid motion coplanarity

$$R^T = R^{-1} \begin{pmatrix} x' = \mathbf{R}(x - t) & (x - t)^\top (t \times x) = 0 \\ R^T x' = x - t \\ x'^T R = (x - t)^T \end{pmatrix}$$

$$(\boldsymbol{x}^{\prime \top} \mathbf{R})(\boldsymbol{t} \times \boldsymbol{x}) = 0$$

rigid motion

$$R^T = R^{-1} \begin{pmatrix} x' = \mathbf{R}(x - t) \\ R^T x' = x - t \\ x'^T R = (x - t)^T \end{pmatrix}$$
coplanarity
 $(x - t)^\top (t \times x) = 0$

$$(\boldsymbol{x}^{\prime \top} \mathbf{R})(\boldsymbol{t} \times \boldsymbol{x}) = 0$$
$$(\boldsymbol{x}^{\prime T} \boldsymbol{R})([\boldsymbol{t}]_{\boldsymbol{x}} \boldsymbol{x}) = 0$$

rigid motion

$$R^T = R^{-1}$$
 $x' = R(x - t)$
 $(x - t)^{\top}(t \times x) = 0$
 $R^T x' = x - t$
 $x'^T R = (x - t)^T$

$$(\boldsymbol{x}^{\prime \top} \mathbf{R})(\boldsymbol{t} \times \boldsymbol{x}) = 0$$
$$(\boldsymbol{x}^{\prime T} \boldsymbol{R})([\boldsymbol{t}]_{x} \boldsymbol{x}) = 0$$
$$\boldsymbol{x}^{\prime T} (\boldsymbol{R}[\boldsymbol{t}]_{x}) \boldsymbol{x} = 0$$

rigid motion

$$R^T = R^{-1} \begin{pmatrix} x' = \mathbf{R}(x - t) \\ R^T x' = x - t \\ x'^T R = (x - t)^T \end{pmatrix}$$
coplanarity
 $(x - t)^\top (t \times x) = 0$

$$(\mathbf{x}^{\prime \top} \mathbf{R})(\mathbf{t} \times \mathbf{x}) = 0$$
$$(\mathbf{x}^{\prime T} \mathbf{R})([\mathbf{t}]_{x} \mathbf{x}) = 0$$
$$\mathbf{x}^{\prime T} (\mathbf{R}[\mathbf{t}]_{x}) \mathbf{x} = 0$$

$$\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x} = 0$$

$$\mathbf{x}^{\prime T} \mathbf{R})([\mathbf{t}]_{x} \mathbf{x}) = 0$$

$$^{T} (\mathbf{R}[\mathbf{t}]_{x}) \mathbf{x} = 0$$

$$\mathbf{x}^{\prime T} \mathbf{E} \mathbf{x} = 0$$

$$\mathbf{E} = \mathbf{R}[\mathbf{t}]_{x}$$

$$\mathbf{E} = \mathbf{R}[\mathbf{t}]_{x}$$

Contents

- Structure from motion
- Triangulation
- Stereo matching
- Camera rectification
- Epipolar geometry
 - Essential matrix
 - Fundamental matrix
 - Estimating the fundamental matrix
- Other 3D sensors

Fundamental matrix

The Essential matrix operates on image points expressed in **normalized coordinates**

(points have been aligned (normalized) to camera coordinates)

$$\hat{m{x}'} = \mathbf{K}^{-1}m{x}'$$

 $\hat{x} = \mathbf{K}^{-1} x$

camera point image point

Fundamental matrix

Writing out the epipolar constraint in terms of image coordinates

$$\begin{aligned} \mathbf{x}^{\prime \top} \mathbf{K}^{\prime - \top} \mathbf{E} \mathbf{K}^{-1} \mathbf{x} &= 0 \\ \mathbf{x}^{\prime \top} (\mathbf{K}^{\prime - \top} \mathbf{E} \mathbf{K}^{-1}) \mathbf{x} &= 0 \end{aligned} \qquad \begin{array}{l} \text{Fundamental} \\ \text{Matrix} \\ \mathbf{x}^{\prime \top} \mathbf{F} \mathbf{x} &= 0 \end{aligned} \qquad \begin{array}{l} \text{Fundamental} \\ \text{Matrix} \\ F &= K^{\prime - T} E K^{-1} \end{aligned}$$

Contents

- Structure from motion
- Triangulation
- Stereo matching
- Camera rectification
- Epipolar geometry
 - Essential matrix
 - Fundamental matrix
 - Estimating the fundamental matrix
- Other 3D sensors

Estimating F

- Given enough correspondence point between the two images, one can reconstruct the fundamental matrix **F**.
- If K_1 , K_2 are known, we can find E.
 - We can then decompose *E* to *R*, *t* between the two images (This part is out of scope for this lecture).
 - t is found up to a scale in the estimation but it's easy to get a good measure of it with a ruler.

Estimating F – 8-point algorithm

• The fundamental matrix F is defined by

$$\mathbf{x'}^{\mathrm{T}}\mathbf{F}\mathbf{x}=\mathbf{0}$$

for any pair of matches x and x' in two images.

• Let $\mathbf{x} = (u, v, 1)^{\mathsf{T}}$ and $\mathbf{x}' = (u', v', 1)^{\mathsf{T}}$, $\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}$

each match gives a linear equation

 $uu'f_{11} + vu'f_{12} + u'f_{13} + uv'f_{21} + vv'f_{22} + v'f_{23} + uf_{31} + vf_{32} + f_{33} = 0$

8-point algorithm

• Like with homographies, instead of solving $\mathbf{Af} = 0$, we seek f to minimize $\|\mathbf{Af}\|$, least eigenvector of $\mathbf{A}^{\mathrm{T}}\mathbf{A}$.

8-point algorithm – Problem?

- **F** should have rank 2
- To enforce that **F** is of rank 2, F is replaced by F' that minimizes $\|\mathbf{F} \mathbf{F}'\|$ subject to the rank constraint.

• This is achieved by SVD. Let $\mathbf{F} = \mathbf{U} \Sigma \mathbf{V}$, where

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}, \text{ let } \Sigma' = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

then $\mathbf{F}' = \mathbf{U} \Sigma' \mathbf{V}^{\mathrm{T}}$ is the solution.

8-point algorithm

- Pros: it is linear, easy to implement and fast
- Cons: susceptible to noise.
 - Solutions: (all out of scope)
 - normalized 8 points algorithm.
 - 7 points algorithm.
 - Finding K,K' with single camera intrinsics calibration and then search for E (only 5 DOFs instead of 8/7).

Contents

- Structure from motion
- Triangulation
- Stereo matching
- Camera rectification
- Epipolar geometry
 - Essential matrix
 - Fundamental matrix
 - Estimating the fundamental matrix
- Other 3D sensors

- LIDAR, which stands for Light Detection and Ranging (or light radar), is a remote sensing method that uses light in the form of a pulsed laser to measure ranges.
- Most known: velodyne projector.

• Structured light Surface \e<u>i+1</u> q_{j+1} Structured e q Light Camera Projector B Illuminant Camera R (a) 3D Object in the Scene

- Coded light
- Realsense SR305
- https://www.youtube.com/watch?v=PluL7WTIKrM

- Light Coding
- Used in Kinect v1- Kinect for xbox 360.
- Iphone x front camera

